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Summary. Prominent microscopic models simulate panic (which has been 
described as a myth) allowing unwarranted simplifying assumptions that 
people are irrational, non-deliberative and interchangeable. While these as-
sumptions can be remedied by increasing the behavioural repertoire of mod-
elled individuals, large cognitive architectures would stifle a model’s power 
to explain emergent crowd effects. We propose the microscopic human factor 
(MHF) approach that increases behavioural repertoire without compromise to 
the elegant simplicity from which the models derive their explanatory power. 

1 Introduction 
Jonathan Sime once admonished building designers for creating ball-bearing 
designs that treat people “as if they are nonthinking objects rather like the 
elements of a building structure” [1]. He argued that such designs neglect the 
important interactions between people and spaces. Sime also touched on 
evacuation simulations, suggesting that human cognition, decision making 
and social behaviours were excluded from models for practical reasons of 
modelling difficulty [2].  
 Since that time microscopic models have been developed. These models 
can, in principle, incorporate individuality. Yet, because of a continued focus 
on irrational “panic” behaviours, these models largely simulate homogenous 
crowds and ignore human factors. They still model ball-bearings. 
 The purpose of this paper is to argue that microscopic models must leave 
panic behind by modelling people rather than ball-bearings, and furthermore 
that this improvement is both possible and practical. In aid of this position, 
we begin by briefly reviewing the case against panic in crowds. We then turn 
to a consideration of two prominent microscopic models, their foundations in 
panic as a description of human behaviour and the problems introduced by 
the panic assumption. We will then describe our microscopic human factor 
(MHF) approach that moves a microscopic model away from panic by in-
creasing behavioural repertoire – without jettisoning the benefits of micro-
scopic modelling in the process. Finally, as a demonstration of the utility of 
the MHF approach, we will discuss our experience in using MHF techniques 
to expand the repertoire of the floor field model [3].  

2 Panic 
People are generally familiar with the concept of panic. Informed only by 
attention-seeking media reports and the emotionally-appealing images of 
Hollywood action blockbusters, it is easy to believe that people in large 
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crowds are prone to mindless flight and irrational behaviour on the one hand, 
and deliberate violence and uncontrolled aggression on the other. Dictionary 
definitions of panic support this populist view, emphasizing uncontrolled 
flight with an accompanying state of emotional arousal and unreasoned be-
haviour [4]. Johnson’s sociological investigation found that the concept of 
panic includes “selfish competition uncontrolled by social and cultural con-
straints” [5]. In our view, the hallmark of panic, then, is irrational and asocial 
or anti-social behaviour. 
 The question is: do people really panic in crowd situations? The aca-
demic view opposes the pop-psychological irrationalist view just described. It 
is the academic perspective that the behaviour of people in emergency situa-
tions (such as fire and crowd disasters) is not irrational – rather, making sense 
in the context of the information available at the time [2,6]. Additionally, 
sociologists tell us that social norms continue to be important in these situa-
tions and that incidences of injuries in crowds are seldom deliberate acts by 
violent people [5,7]. Although competitive evacuations do occur, irrational 
panic (despite its media-driven allure) is at best non-explanatory and is at 
worst seen as a myth [8]. 

3 Panic in microscopic models 
Panic is such a compelling concept, however, that it continues to crop up in 
non-behavioural disciplines modelling crowd behaviour, particularly in mi-
croscopic models (see below). Although these disciplines may be less famil-
iar with the evidence from the social sciences against panic, there is another 
reason why panic is compelling for crowd modellers. Because panicked indi-
viduals are assumed to exhibit behaviour that is irrational and free of social 
constraints the modeller is relieved of the responsibility to simulate cogni-
tive/psychological/behavioural factors in crowd dynamics. The result is 
agents (modelled individuals) that are non-cognitive; specifically they are 
non-rational (taking actions that do not make sense), non-deliberative (con-
taining no mental state or processing) and interchangeable. This in turn re-
duces the complexity of the model, and encourages techniques used tradi-
tionally to model inanimate objects.  
 Although the panic assumption may be convenient in that it reduces 
complexity, it means that the behaviour modelled is at odds with our concept 
of human behaviour. This opens the model to the criticism that its results 
cannot be meaningfully applied to people because it is not a model of people. 
Let us consider the human behaviour simulation in two prominent micro-
scopic models that use different modelling approaches. 
 The social force model is explicitly presented as a model for investigat-
ing panic [9]. This explains why its agents are reactive rather than delibera-
tive, and why they have homogenous behaviour; its agents are interchange-
able, operating on the same information to the same ends. This sets the stage 
for a particle-dynamics-based numerical simulation. We note that this model 
incorporates a simulation of personal space within the numerical simulation 
(the social force). Although this is a positive aspect of the model, it is over-
shadowed by the continued focus on panic as a predictor of behaviour.  
 The floor field model [3], born from a vehicular cellular automaton, has 
been used to study several different pedestrian phenomena (notably bottle-
necks at an exit during evacuation [10]). The authors, while unfortunately 



following [9] in identifying panic as a likely outcome of some situations, take 
the positive step of modelling “normal” conditions as well. The normal con-
ditions in the model, however, still resonate with Sime’s ball-bearing meta-
phor. The agents lack facilities for the heterogeneity that comes from human 
cognition and behaviour – the authors state their desire to keep the model 
simple by avoiding agent intelligence.  
 Although we are concerned about the applicability of these models to 
general human behaviour, we do not wish to imply that these models have no 
value. The great value of microscopic models, in our view, is that they simu-
late emergent macro-level crowd effects through simple local rules evaluated 
from the perspective of each agent. By analysing these micro-level rules it is 
possible to determine the conditions under which the macro-level effects will 
be produced, enhanced or moderated. Notwithstanding this, we argue that 
there is an opportunity to improve the microscopic explanatory power of the 
models by moving away from the unwarranted assumption of panic.  

4 Microscopic Human Factors 
The way to improve these microscopic models, in short, is to make the agents 
behave more like people. Currently, for example, the agents have one fixed 
goal, they do not change their goals based on information obtained from the 
environment, they do not communicate information amongst themselves, 
they queue indefinitely at bottlenecks, they do not intentionally originate any 
forces, etc. Humans, by contrast, are cognitive with a rich behavioural reper-
toire available for deployment. Ultimately it is this behavioural repertoire that 
is denied by the panic assumption and which is therefore not represented in 
the microscopic models. It is the lack of these behaviours – even more than 
the precise cognitive process that underlies them – that calls into question 
these models’ applicability to human crowds. 
 The question we are left with, then, is how to (a) improve microscopic 
models’ treatment of human behaviour without (b) losing the benefits of 
these models. One approach to (a) is to import large-scale cognitive architec-
tures such as ACT-R [11], which aim to simulate complex cognitive proc-
esses including perception, memory, attention, planning, etc. Although this 
approach may improve relevance to people, it negates one of the key benefits 
of microscopic models: the establishment of causal connections between 
emergent macro-level crowd effects and their origins in individual behaviour. 
Simple agent rules give way to a complex cognitive simulation that tends to 
be analytically opaque (as cognitive architectures are emergent systems 
themselves). The microscopic model becomes little more than an arena, 
simulating the physics and movement of agents, but divorced from the real 
action unfolding within the cognitive simulators. This disconnection breaks 
the causal chain and it becomes difficult to explain the macro-level crowd 
effects by reference to processes within the individual. 
 The key to maintaining the benefits inherent in microscopic models is to 
respect the simplicity and elegance that is their nature. Any model is, by 
definition, an abstraction that discards detail through simplification in favour 
of explanatory power. We can simplify and abstract behavioural characteris-
tics in order to bring them within the framework of the microscopic model. 
Our approach is to simulate cognitive behaviour and structures at the same 
level of abstraction at which the microscopic models currently simulate 



movement behaviours. We can then increase behavioural repertoire by ex-
pressing human characteristics as simple local rules, fusing them with the 
simple local rules of the microscopic model. We call these simple local rules 
microscopic human factors (MHFs). This technique ensures that the causal 
connection between emergent crowd behaviours and the local agent rules is 
not broken. 

5 Microscopic Human Factors in the Floor Field model 
In order to demonstrate the potential of the MHF technique, we now turn to 
an example: a discovery and communication simulation [12]. This is one of 
several extensions we have made to the floor field model. (For other exam-
ples, see the voluntary pushing in our force model [13] and our model of 
front-to-back communication [14].) 
 We have found the floor field model to be particularly amenable to ex-
tension because its simple cellular automaton rules are both defined and 
evaluated from the perspective of the individual. These rules are easily ex-
pressed within the context of a multi-agent system (MAS), our preferred tool 
for modelling emergent effects and studying collective behaviour. In a MAS, 
agents are considered to be autonomous, with internal rules and the possibil-
ity for internal state; this allows for the possibility that agents with different 
sets of rules can be simulated together, for agent memory and consequently 
for behaviours that unfold over time. By implementing the rules of the floor 
field model in a multi-agent system we gain the opportunity to specify more 
internal behaviour for the agents. 
 We have noted above that the agents in the floor field model are ho-
mogenous with respect to their movement goals. Case studies of fire events 
(e.g. [15]) indicate that people can be reasonably expected to have different 
experience, goals and behaviours in a fire, that not everyone will move to the 
same exit and that communication (e.g. of exit locations) can change people’s 
goals. Our goal in introducing this MHF was to reduce agent homogeneity 
through discovery and communication of exit locations in the physical envi-
ronment. We will proceed by outlining the relevant parts of the floor field 
model, summarizing our changes to the basic model, and discussing our re-
sults. 
 In the classic floor field model (see [3] for complete details) an agent’s 
behaviour is driven by two floor fields. These fields are like maps in that they 
store information in the context of its location; when making movement deci-
sions, agents make reference only to their immediate surroundings. The static 
field, S, provides, for each location, a distance to points of interest (e.g. the 
closest exit). The dynamic field, D, provides, for each location, a measure of 
the number of agents that have recently moved through. Agents’ use of these 
fields is further altered by the use of sensitivity parameters that can decrease 
sensitivity to a field (e.g. decreased sensitivity to the static field implies poor 
knowledge of the space) or increase sensitivity to a field (e.g. increased sensi-
tivity to the dynamic field promotes following behaviours). In our model, an 
agent considers movement from its current cell to the four cardinal neigh-
bours rating each neighbouring cell according to the following (slightly sim-
plified) formula in which kD and kS are the sensitivity parameters and i and j 
identify the cell being rated. 
 

! 

desirability = exp(kDDij ) exp(kSSij )  (1) 



Each neighbour cell is evaluated for desirability according to this formula, 
and a probabilistic decision is made in which better-rated neighbour cells are 
more likely to be selected as a desired destination. Each agent undertakes this 
desirability calculation at the same time. Movement is then done in parallel, 
and agents may or may not get to complete their movement depending on 
whether they collide with or are blocked by others. 
 We used the MHF approach to add evolving goals by introducing addi-
tional static fields into the floor field model. As static fields underlie an 
agent’s navigational ability – representing knowledge of the space – replac-
ing an agent’s static field with a more elaborated one is analogous to the 
agent integrating new information into its mental map. We fused this new 
behavioural concept with the model done microscopically at the level of the 
desirability calculation (eq. 1). The agent now considers one of a set of static 
fields by changing the 
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Sij  term to 

! 

Snij , n indicating the index into the set. 
We also added two ways that an agent’s static field change can be triggered: 
discovery and communication. The discovery method involves the addition 
of a new floor field, the discovery field1. This field simply encodes a number 
on each cell indicating the static field that should be consulted. If the agent 
moves to a cell with a higher number, it is assumed to gain the information 
available there, and switches to the corresponding static field. Regarding 
communication, if an agent is blocked in movement (because another agent is 
occupying its desired cell) then the blocked agent communicates its static 
field number. The blocking agent, hearing a (higher-numbered) static field, 
incorporates this information by switching to the indicated static field. 
 Let us consider an application of these changes to the model. Consider 
an egress scenario in which there are two well-known exits from a space, but 
one is blocked. In a real life we expect that people who approach a blocked 
exit change their goal, moving to an alternate exit. The classic floor field 
model cannot simulate this because agent goals are determined by the model-
ler at the outset and are fixed. Our discovery and communication MHF han-
dles the scenario using two static fields: the first, in which there are two exits, 
and the second, in which the blocked exit does not appear. At the outset, all 
agents use the first static field. The discovery field causes agents who ap-
proach the blocked exit to change to the second static field. These agents can 
communicate news of the blocked exits to others.   
 There are two patterns of agent behaviour when the model is run. Some 
of the agents use the good exit directly, never learning of the exit blockage. 
Others move to the blocked exit, discover the new information, change their 
mental map, and start moving toward the good exit, potentially alerting naïve 
agents along the way.  
 Because this is a microscopic model with very simple rules, the MHF 
approach allows us to study the emergent effects of communication and in-
formation. For example, if communication is prevented, large numbers of 
naïve agents trying to reach the blocked exit can pin knowledgeable agents in 
place, preventing them from reaching the open exit and creating an impasse 
(see figure 1). 

                                                             
1 We originally called this the information field but this name was confusing 
because all fields carry information. We have renamed it the discovery field. 



 
Figure 1 Knowledgeable agents (light gray) know the lower exit is blocked, 

but are pinned in place by naïve agents (dark gray) 

6 Conclusion 
While behavioural researchers have exposed the myth of panic, microscopic 
models continue to be panic-based. By leaving panic behind we can begin, as 
Sime suggested, to model people rather than ball-bearings. The Microscopic 
Human Factors (MHF) approach can improve the behavioural repertoire of 
microscopic models, and hence reduce their focus on irrational, homogenous, 
interchangeable agents. This approach simulates cognitive behaviour and 
structures at the same level of abstraction at which the microscopic models 
currently simulate movement behaviour. This allows behavioural rules to be 
fused with existing model rules and preserves the causal connection between 
agent rules and emergent crowd-level effects – ultimately allowing for a 
study of the emergent consequences of human behaviour in agents. The MHF 
approach helps to distance microscopic models from panic simulation by 
increasing the models’ relevance to human crowds – without compromise to 
the simplicity from which the models derive their explanatory power.  
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