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Abstract

Due, perhaps, to the historical division of crowd dynamics re-
search into psychological and engineering approaches, micro-
scopic crowd models have tended toward modelling simple
interchangeable particles with an emphasis on the simulation
of physical factors. Despite the fact that people have complex
(non-panic) behaviours in crowd disasters, important human
factors in crowd dynamics such as information discovery and
processing, changing goals and communication have not yet
been well integrated at the microscopic level. We use our Mi-
croscopic Human Factors methodology to fuse a microscopic
simulation of these human factors with a popular microscopic
crowd model. By tightly integrating human factors with the
existing model we can study the effects on the physical do-
main (movement, force and crowd safety) when human be-
haviour (information processing and communication) is in-
troduced.

In a large-room egress scenario with ample exits, infor-
mation discovery and processing yields a crowd of non-
interchangeable individuals who, despite close proximity,
have different goals due to their different beliefs. This
crowd heterogeneity leads to complex inter-particle inter-
actions such as jamming transitions in open space; at high
crowd energies, we found a freezing by heating effect (rem-
iniscent of the disaster at Central Lenin Stadium in 1982)
in which a barrier formation of naïve individuals trying to
reach blocked exits prevented knowledgeable ones from exit-
ing. Communication, when introduced, reduced this barrier
formation, increasing both exit rates and crowd safety.
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1 Introduction

Crowds have typically been studied from two separate
perspectives: the psychological perspective (in which
human behavioural tendencies are considered in iso-
lation from their physical embodiment and surround-
ings) and the engineering perspective (in which ho-
mogeneous driven particles interact on a purely physi-
cal basis). Although this dichotomy in approaches has
long been criticised (e.g. [1]), established statistical-
mechanical models of crowd dynamics (e.g. [2, 3])
have not yet addressed this issue; instead they tradi-
tionally justify simplistic particle behaviour through an
assumption of panic (i.e. that people in crowd disasters
behave irrationally, interchangeably and anti-socially).
This assumption helps to justify a simplistic view of
behaviour, such as when a crowd is compared to ho-
mogeneous particles like seeds or powders in a hop-
per [4]. People are not like homogeneous, interchange-
able, non-rational, non-cognitive seeds in a hopper; in
order to claim that our microscopic models represent
crowds of people (and not of inanimate objects) we
must begin to incorporate human factors into micro-
scopic models.

The popular assumption that people generally panic
in crowd situations is false (see [5, 6] for more on this
point). By contrast, people are described as “at their
best” in crowd disasters [7], in which they are seen to
take decisions that make sense based on the informa-
tion available to them at the time [8, 9]. Inadequate
information, however, is known to be a factor in many
crowd incidents. For example, Proulx and Sime have
noted that, in fires, notification to occupants is often
delayed — sometimes for fear of causing a ‘panic’ —
resulting in precious minutes being wasted early in a
situation. (This delay can itself contribute to disaster
when not enough time remains for occupants to assim-
ilate the information and move to exits.) Their experi-
ments demonstrate that people require “information to
define the situation and to take the decision to evacu-
ate” [8].
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The persistence of the noted dichotomy between
physical and psychological approaches to understand-
ing crowds means that microscopic models miss out on
study of the physical effects of human behavioural fac-
tors. The purpose of this article is to begin to bridge this
gap in the case of two behavioural factors — informa-
tion processing and communication — in the context
of our force-enabled version of the floor field pedes-
trian model [2, 10]. In developing our simulation,
we shall retain the particle-based metaphor common
to microscopic models, but apply a novel approach to
modelling human factors: the Microscopic Human Fac-
tors methodology, which guides the implementation of
our two behavioural factors at the heart of the exist-
ing model. We shall add spatial information discovery
to the modelled environment, and examine both quali-
tative and quantitative effects at the crowd level that
result from information processing by particles. We
then activate communication between individual par-
ticles and analyse the changes in microscopic crowd
dynamics due to this social behaviour. In discussion,
we shall relate our results to a classical crowd disaster
(Central Lenin Stadium), then conclude.

2 Simulating information process-
ing and communication

We have developed the Microscopic Human Factors
(MHF) methodology [6, 11], which is designed to pro-
vide guidance in creating a microscopic simulation of
human behaviour that is tightly integrated with a mi-
croscopic model at an appropriate level of abstraction.
The MHF methodology requires three complete and
increasingly abstract descriptions of information pro-
cessing and communication in crowds: (i) the spec-
ification circumscribes the behaviour to be modelled
and identifies the theoretical stance toward the macro-
scopic emergent behaviour, (ii) the reduction expresses
formalism-neutral rules that guide individual particles
in microscopically generating the emergent behaviour,
and (iii) the implementation describes the integration
of these rules with the formalism of a particular mi-
croscopic model. A simulation missing one of these
levels of description is incomplete (as an explanation
of behaviour) due to a failure, respectively: (i) to ex-
plain the relevance of the model to our understanding
of crowd dynamics, (ii) to explain which parts of the
simulation are theoretically relevant vs. formalism ar-
tifacts, or (iii) to demonstrate how the results may be
influenced by the formalism selected.

2.1 Specification

Our conception of information processing is due to
Sime’s observation that:

It is important to note that a building or set-
ting (such as an underground station) is not
only a physical space or structure, but an in-
formation system through which people move.
If this is remembered, it should help direct
attention to the perspective of crowd mem-
bers, as well as to the physical dimensions of
a setting (i.e. psychological and engineering
parameters) [1] (emphasis Sime’s).

Sime describes a system with three domains: oc-
cupants, space and information. This implies a sys-
tem with distributed artifacts (e.g. signs, doorways,
etc.) that are able to impart knowledge if perceived.
Agents must move through the space to within percep-
tual range of the artifact to gain the knowledge.

That people can extract information from their en-
vironment implies a heterogeneous crowd: two people
close to one another may be engaged in different ac-
tions due to their personal history of information gath-
ering. To a person with more complete knowledge,
the space affords more (or more accurate) options in
terms of movement goals. In exiting a space, a more
knowledgeable person may move differently (e.g. to-
ward little-known exits) from others close to them, a
difference explained by their extra knowledge. During
the Cocoanut Grove bar fire, for example, some occu-
pants of a packed basement lounge reached safety (led
by knowledgeable staff) through a hidden emergency
exit while many others died trying to escape up the
main entrance stairwell [12].

People moving through a space are sensitive to new
information and can readily absorb it and change their
behaviour accordingly. For example, upon approaching
a blocked exit, a person wishing to leave changes their
behaviour (e.g. moving instead to an alternate exit).
Similarly, a person discovering a previously unknown
open exit will assimilate this information leading to the
potential for its use [13]. (It should be noted that this
premise, in particular during an evacuation, is contra-
dictory to the hypothesis that people panic. It depends
on a view of people as rational and capable of cognitive
processing.)

It is not only inanimate aspects of a scenario that can
carry information. People moving through a space oc-
cupied by others are capable of socially sharing their
knowledge of the space through communication (as in
the Cocoanut Grove example). Johnson has reported
that generalised shouting was futile in a crowd disaster
[7], so when crowd members communicate amongst
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themselves (as opposed to, say, amplified overhead an-
nouncements by crowd managers) we focus on person-
to-person communication.

We can use the three described domains as a guide
in developing our simulation. Microscopic models, as
noted, already have a strength in physical modelling.
We shall explicitly introduce the information domain
into the model. We shall augment the occupant domain
to better model the basic human ability to process and
respond to information during circulation. The desired
outcome is improved model relevance to real people
and scenarios. We have not attempted to model all
aspects of information in crowds; for example, issues
of trust in communication and exit preference are not
captured by this model. Our goal here is to begin an
investigation of information processing and communi-
cation in crowds, and we leave interesting factors such
as these to future work.

2.2 Reduction

Having explained the importance of information and
how it is obtained, used and communicated in crowds,
we turn now to a discussion of how this process can be
explained through formalism-neutral rules that guide
individual crowd members. We focus on diverging
movement goals as the end result of information ac-
cumulation by individuals within the crowd. These di-
vergent goals will arise from evolution of the beliefs of
individuals, caused by discovery and communication of
new spatial facts. The ultimate source of these facts will
be an information system incorporated at the heart of
a microscopic movement model. From the specification
above, we derive the following essential, and individual
rules:

Explicit mental content. The key to generating a het-
erogeneous model based on discovery and communica-
tion of spatial knowledge is to note that different indi-
viduals have differing mental content about their envi-
ronment. In a microscopic model we aim for simplic-
ity and abstraction; we want to avoid complicating the
model with, for example, inductive or deductive rea-
soning, or large formal knowledge representation sys-
tems (e.g. [14]). In order to determine the effects of
— and interactions between — different beliefs on be-
haviour, it is desirable that the set of possible beliefs be
restricted in size. Thus, our model maintains certain
specified and indivisible views of the world, and indi-
viduals select from among these views during model
execution. In a simulation, these views are created by
the modeller as part of specifying the scenario. For ex-
ample, the modeller may wish to represent one view

of the world in which existence of a set of exits is un-
known, and a second in which the exits are known; this
could underlie two different behaviours, depending on
which view of the world an individual considers.

Discovery and accumulation of knowledge. Indi-
viduals accumulate information about their surround-
ings as they move throughout a space. This discovery
is triggered upon moving to particular circumscribed
areas within the model, whose size and placement is
consistent with the modeller’s intentions with respect
to the perceptual capabilities of crowd members be-
ing modelled. Discovery of information corresponds to
changing mental content as described above. Like the
mental content itself, the discovery areas are specified
by the modeller, who may choose to allow these discov-
ery zones to be somewhat dynamic; this allows repre-
sentation of information that becomes available at cer-
tain locations after the start of the simulation (e.g. lo-
calised announcements).

Individuals accumulate knowledge over time while
moving through spaces. Learning some facts about the
world does not preclude additional facts being learnt
later, and later learning generally accumulates with —
as opposed to supplanting — previous mental content.
To some extent this rule is already addressed by the set
of indivisible mental content, which requires the mod-
eller to specify all possible views of the world. The
present rule, however, goes further by requiring the
provision of acceptable transition rules. For example, a
person discovering that an exit is blocked will not gen-
erally regress to a state in which they have forgotten
the blockage. (This is not to say that misinformation
cannot occur. Someone can learn of a putative exit and
subsequently learn that the exit does not exist. In this
case it is not that they have regressed to an earlier state
of knowledge through simple forgetting.)

Directed communication. By simulating direct com-
munication we can use the model to investigate be-
haviour engendered by people becoming informed, in-
cluding misinformed, without physically visiting the
discovery locations. As noted in the specification, the
communication model is assumed to rely on direct
person-to-person contact. We take communication to
occur not on a random basis, but with a purpose,
namely to assist in achieving movement goals when
blocked by another individual. (Other possible pur-
poses for communication, for example local leadership
and altruism, are left for future work.)
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2.3 Implementation: Floor field model

Before explaining the implementation of the rules just
described, it is important to describe the formalism
within which these rules will be expressed. We have
found the floor field model cellular automaton [2] to be
an excellent formalism for implementing MHF models,
affording close fusion between the model’s implemen-
tation and new rules representing human behaviour.
This model has proven to be full of potential, and has
been the subject of a number of interesting refinements
and extensions (e.g. [6, 10, 15–25]); it is necessary to
select a point in time that serves as a baseline for our
work. We adopted the model as it was presented in
an exploration of the floor field model’s applicability to
egress simulation [16]. We have elsewhere described
our interpretation of this model as a multi-agent system
and our additions of pushing (force initiation), lean-
ing (force re-transmission) and crowd safety simula-
tions [6, 10]. Accordingly, we here present a brief ex-
planation of the floor field model sufficient to explain in
section 2.4 how we have implemented an information
system with communication amongst floor field pedes-
trian particles.

The floor field model, according to our force-enabled
agent-based restatement, is a microscopic crowd model
of individuals (agents) with two actions: moving and
pushing. Agents are initially distributed at random on a
2-dimensional grid that provides a co-ordinate system,
both for movement and for maps of information avail-
able to agents called fields. Agents have an individual
rule-based behaviour, balancing their movement deci-
sions between reducing distance from desired goals and
following other nearby agents. The floor field model
as originally specified does not provide for individual
cognition beyond combining the two perceptions just
described.

2.3.1 Physical environment

Cells and occupancy. The discrete time evolution of
the model considers the dynamic and unfolding occu-
pancy of cells. Agents move a distance of zero or one
cell per time step. Movements are planned by all agents
in parallel, then executed simultaneously. Up to one
agent can occupy a cell per time step. Certain cells
within the space (e.g. around the perimeter of the mod-
elled area) can be designated as wall cells. These cells
are unavailable for occupation.

Cell adjacency. The model uses the Cartesian direc-
tions in determining cell adjacency. In other words, al-
lowable movement directions on the two-dimensional
grid are North, South, East and West. (It is often re-

quired to speak of the possible cells an agent could
move to in the next time step. This is called the neigh-
bourhood and, in the force-enabled floor field model,
includes the four adjacent cells.)

2.3.2 Floor fields

Agents make observations of their local environment
by consulting one of three floor fields, and in some
cases alter these fields as they move through the sim-
ulated space. Each field provides a measure of a spe-
cific type of information, detailed below. (Tradition-
ally in the floor field model, the fields were composed
of “bosons” which interacted with and drove the agent
particles, dubbed “fermions” [2]. We prefer now to re-
fer, where required, to virtual “particles” on cells as the
constituents of these fields.) Aside from the presence of
wall cells or other agents in the neighbourhood, agents
do not have recourse to any information aside from the
fields.

Static field. The first of the three fields provided by
the model is the continuous static field, the strength of
which varies inversely with the distance to the exit (see
figure 1a). During egress, the static field can be con-
sidered a measure of desirability; cells closer to an exit
are more desirable. As expected from the name, the
static field is fixed from the start of the simulation run,
and does not change during the run. Any one of sev-
eral methods can be used to calculate the value of the
static field, with different simulation dynamics result-
ing [18,24]. We adopt the simple linear distance mea-
sure used by [16]:

s(i, j) = min
(dx ,dy )∈X

Æ

(dx − i)2 + (dy − j)2 (1)

smax =max
∀(i, j)

s(i, j) (2)

Si j = smax − s(i, j) (3)

Here s(i, j) gives the distance from a cell with co-
ordinates (i, j) to the closest exit in X , the set of co-
ordinates of all exits. The normalisation number, smax ,
is the greatest distance to an exit from any cell. The
final static field value, Si j , decreases from smax at exit
cells to 0 on the furthest cell from an exit.

Dynamic field. The second of the two fields provided
by the floor field model is the dynamic field. It provides
for agents to become aware of the movement of others
by analogy with ant pheromone chemotaxis (c.f. [26]),
reducing long-range interactions to local ones. It is a
discrete field. When an agent moves from a cell (i, j)
to an adjacent cell it drops a dynamic particle on the
origin cell (Di j → Di j + 1) (see figure 1b).
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a. Floor field model space with static field, S. Agent (pic-
tured) can move to neighbouring cells (arrows) or cur-
rent cell (arrow not shown). Cell selection is probabilistic
based on agent’s perceived desirability of cell (arrow size).
Movement to exit cell (starred) results in subsequent dis-
appearance of agent. Static field (colour gradient) repre-
sents inherent cell desirability; field strength on own and
neighbouring cells is accessible to the agent.

b. Floor field model space with dynamic field, D. Previ-
ous agents (e.g. top agent moving up from centre) have
dropped dynamic particles (circles). Dynamic particles
probabilistically decay (middle group) or diffuse to neigh-
bouring cells (lower group). An agent attending only to
the dynamic field uses this particle density like a trail
(lower agent following colour gradient) to follow preced-
ing agents.

Figure 1: Static (a) and dynamic (b) floor fields in the floor field model [2]
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The dynamic field is so named because — in contrast
to the static field — its particles are considered to be
active; like a scent, the dynamic field decays and dif-
fuses. During each time step, each dynamic particle in
the model decays with probability δ. Those particles
that do not decay may diffuse (move to a randomly se-
lected adjacent cell) with probability α. (Both of these
probabilities are parameters to the model.) Agents can
consult the values of the dynamic field in neighbour
cells in order to follow virtual “paths” left by previous
agents. Due to the effect of δ, paths must be constantly
refreshed in order to be effective at guiding pedestri-
ans, while α controls the spreading of these paths (with
the effect of recruiting nearby agents to the path).

Force field. The third field, introduced in [10], con-
tains unit vector particles representing directed units of
force. The total force on a cell (i, j) is ~fi j , the vector
sum of the vector particles present there. (The force
on cells is initially zero.) In real crowds, forces are re-
transmitted from person to person through “a domino
effect of people leaning against each other” [27] and
thus, in each time step, ~fi j is propagated in its entirety
by distributing |~fi j | force particles to the neighbouring
cell in the direction of ~fi j .

1 Force is dissipated (i.e. its
underlying particles disappear) if it would move onto
an empty cell or a wall cell, or a cell with an injured
agent (see below).

2.3.3 Cell selection and movement

To guide agents through the model, a score, ci j , is as-
signed to each cell indicating its desirability:

ci j = exp(kD Di j)exp(kSSi j) (1−ηi j)ξi j (4)

Here, ηi j is 0.5 for occupied cells (otherwise 0) and ξi j
is 0 for walls (otherwise 1).

Two sensitivity parameters, kS and kD are provided
as parameters to the model, as it is desirable to regulate
the information available to the agent from each of the
floor fields. (It may be that the agents do not have per-
fect information concerning the movement of others,
for example due to darkness.) The kS and kD param-
eters scale the influence of Si j and Di j (the static and

1In the case where ~fi j points between two cells, a probabilistic

quantisation is used where each of the |~fi j | particles deposited has a
chance of being deposited on one of the two cells according to

1− pa =
f̂i j mod 90

90
= pb

where pa is the probability of selecting the neighbour with the lower
angle, pb is the probability of selecting the neighbour with the higher
angle, and f̂i j is the angle of ~fi j expressed in degrees.

dynamic field values, respectively); a sensitivity param-
eter can increase a field’s influence (k > 1) or decrease
it (0 ¶ k < 1). To take an egress example, if kS is
low, then the agent moves through the grid ignorant
of where the exits are. If kS is high, then the agent
is attuned to the location of exits. If kD is low, then
the agent is not concerned/aware of the movements of
others. If kD is high then the agent will be disposed to
follow other agents through the grid.

Agents engaged in selection of a target cell for move-
ment convert the scores on neighbouring cells to prob-
abilities, according to equation 5, in which N is the set
of co-ordinates of neighbour cells.

pi j =
ci j

∑

(i′, j′)∈N

ci′ j′
(5)

All agents probabilistically select cells in every time
step, simultaneously, and before any movement occurs.
Movement is not always possible (providing an implicit
chance of remaining still) either due to selection of a
cell that is not vacant or is desired by more than one
agent. (In the latter case a random agent is success-
ful.) In either case, an agent frustrated in movement
will push, generating force by dropping ρ force vector
particles (a value that depends on the strength of the
agent) oriented in the direction of desired travel onto
the desired cell.

For the purpose of modelling ingress or egress be-
haviours, the floor field model permits designated exit
cells, generally within the walls. Agents move onto
these cells as usual and occupy them for the duration
of the time step. The next move of an agent occupying
an exit cell is to disappear from the model.

2.3.4 Effects of force

Force can have serious consequences for agents. Al-
though the vector sum of opposing forces may cancel
to zero on a cell, an agent occupying that cell is consid-
ered to be pinned between these forces. For this reason,
when considering effects on agents, the scalar sum fi j
of force vector particles is used, rather than the vector
sum ~fi j .

Two thresholds are provided for agent force conse-
quences: With moderate force ( fi j > χ) agents lose
control of their own movements, bypass the cell selec-
tion algorithm of section 2.3.3, and are instead forced
to select the cell in the direction of ~fi j . With extreme
force ( fi j > φ > χ) the agent is injured, becomes to-
tally inactive, no longer moves through the model, and
is treated like a wall cell by other agents and the force
propagation algorithm.
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2.4 Implementation: Human factors

We can now proceed to fuse the individual rules for in-
formation processing and communication (section 2.2)
with the existing individual rules of the floor field
model (section 2.3).

2.4.1 Representations of space

The changes to the model depart from the force-
enabled floor field model in two major respects. First,
they allow for individual agents to perceive the mod-
elled world differently from one another, creating a
heterogeneous crowd. Second, they allow for agents
to change their view of the world, either under the in-
fluence of a new discovery field, or through a simple
inter-agent communication mechanism.

In the floor field model, the individual’s only rep-
resentation of space is the static field, which encodes
a distance from points of interest. In the new model,
the reduction requires that the modeller make explicit
all the possible views of the world. In order to repre-
sent multiple views of the world within the floor field
model, we replace its single static field with a set of
static fields. Each possible view of the world is repre-
sented as a distinct field within this set, and each rep-
resents an indivisible and complete view of the space.

We redefine the symbol S to refer to a set of static
fields rather than the sole static field of the floor field
model:

S =
�

S0, S1, S2, . . . , Sn
	

(6)

The semantics of the static fields are not altered from
the original model. Each of the fields is created from
a set of points of interest using one of several met-
rics [18,24] to determine the distance from each cell to
the nearest such point. When modelling egress with the
classic floor field model, we take the set of locations of
interest to be the same as the set of exit cells in creation
of a single static field; in the present reformulation, the
additional static fields would typically include points of
interest at locations other than at real exits (represent-
ing blocked exits, or misinformation) and/or would ex-
clude points of interest at legitimate exits (representing
exits that are unknown to an agent having that view of
the world). For example, a static field incorporating
belief in a non-existent (or blocked) exit would be cal-
culated by supposing the presence of that exit and then
carrying out the standard method for calculating the
static field.

Having provided for multiple representations of the
world, the agents must be modified to allow them to
determine which representation is currently being con-
sulted. Each agent is extended by adding an integer in-
dex into the set of static fields called the view selector,

ψ. The view selector identifies the static field currently
being consulted by the agent, which has no access to
the information in other static fields.

The cell scoring function of the model (equation 4)
is altered to take account of the view selector:

ci j = exp(kD Di j)exp(kSSψi j) (1−ηi j)ξi j (7)

Notice that in equation 7 the term Sψi j replaces Si j ,
reflecting the alteration in meaning of S due to equa-
tion 6. In the original floor field model the value ci j
conceptually exists independently of an observer, while
in the new model it is dependent on an observer (who
sets the value of ψ).

Equations 6 and 7 together represent the primary
change made to the floor field model to support hetero-
geneous crowds based on knowledge of space. By pro-
viding a spatial representation at an appropriate scale
— tightly integrated at the heart of the floor field model
— we maintain the causal connection between these
rules and the emergent crowd behaviours of the floor
field model.

2.4.2 Physical discovery of spatial information

As the agent moves through the space it is necessary to
provide for a mechanism that allows the agent to dis-
cover information, changing its beliefs about the world
by updating its ψ attribute. The reduction provides
for a spatial mechanism that identifies certain circum-
scribed areas as zones of detection for new spatial in-
formation.

In the ontology of the floor field model, the way to
distribute information spatially is with floor fields, and
the unit of resolution of all spatial information is the
cell. This suggests a new field to manage discovery.
Accordingly, we define a new floor field called the dis-
covery field, I , in which the value on each cell (i, j) is
an integer 0¶ Ii j < |S| specifying the view selector that
an encountering agent should adopt.2 Encountering a
cell (i, j) on which Ii j 6= ψ, implies a potential change
to ψ to bring it in line with Ii j (see figure 2).

As described in the reduction, when encountering
ψ′, a new index into S from the discovery field, agents
must determine if this transition is allowed. This pre-
vents agents from regressing when leaving information
areas. (For example, in figure 2, if the agent steps to the
west, into the area with Ii j = 1 we wantψ to become 1.
If the agent subsequently steps east, we do not want ψ
to return to 0, as this would imply forgetting.) We have
adopted a finite-state machine approach to this prob-
lem, specifying the allowable transitions ψ → ψ′. For

2The symbol I (for information) is used as D already indicates the
dynamic field.
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Figure 2: Discovery field, I , showing a proximity effect in
which approach to a previously unknown exit leads to dis-
covery. In this example, the discovery field encodes two po-
tential view selector values: 0 (dark cells) or 1 (light cells).
These are potential agent ψ values (indices into the set S of
static fields). Suppose that S0 identifies distance only to the
north exit, S1 identifies distance to the closest exit and that
the agent’s ψ = 0. (In this state of affairs, the agent, despite
being equidistant from both exits, is ignorant of the western
one.) A westward step, into the region where I = 1, will
cause the agent to learn of the western exit (through update
of ψ = 1 and hence consultation of S1). Any other step, by
contrast, leads to no new knowledge (continued ψ = 0 and
consultation of S0). The agent can never exit west having
ψ = 0; due to probabilistic cell selection, however, the agent
may exit north with or without knowledge of the western exit
(i.e. with ψ ∈ {0, 1}).

the purposes of this article it is sufficient to enforce a
very simple transition rule: ψ can only increase mono-
tonically:

ψ=

¨

ψ′ if ψ<ψ′,

ψ if ψ¾ψ′
(8)

According to this transition rule we order static fields in
the set in order of increasing knowledge. In a two field
scenario, for example, agents may initially believe there
are two exits in the space, but upon attempting to use
one of the exits discover it blocked. The former view
represents a more naïve view and accordingly appears
earlier in the set than the latter.

While convenient to the purposes of this article, the
model is not limited to a monotonic arrangement of
fields. Any logical state transition rule — including
enumeration of valid transitions — can be used. What

is important is that values of the discovery field logi-
cally represent the minimum information available to
an agent in that location, with ψ taking on the discov-
ery field value of the local cell only if it represents an
increase in knowledge.

2.4.3 Communication of spatial knowledge

Agents encountering one another can communicate
spatial information. There is no prototype for this
within the floor field model, so our direct communi-
cation model is a new development. Communication
requires both a trigger condition, and a mechanism for
information transfer.

The reduction specifies that communication serves a
purpose, namely to assist in achieving movement goals.
In selecting a trigger for communication, then, we note
a similarity with the trigger for voluntary force applica-
tion: Both communication and pushing are attempts to
get a conflicting agent to adopt a more beneficial move-
ment pattern. We assume that communication, there-
fore, will occur exactly in the same situations in which
the agent applies a pushing force; when movement is
frustrated due to an occupying agent on the agent’s de-
sired cell the agent will communicate as well as push.

Like pushing, communication is a directed activity
from one agent toward another. Accordingly, a stig-
mergic mechanism involving an omnidirectional field
is a less desirable implementation compared to a more
specific mechanism isolated to the two agents. Our im-
plementation involves a direct message from a commu-
nicating agent to a blocking agent. Communication in
this sense means sharing information in order to cause
the blocking agent to be recruited to the communi-
cating agent’s goals; the communicating agent shares
its view of the world with the blocking agent. As
agents’ view of the world is represented by the ψ at-
tribute, communication is implemented by updating
the ψ parameter of the blocking agent. Like the dis-
covery mechanism, communication is for information
gain; accordingly, equation 8 is again used to prevent
communication-induced forgetting. The blocking agent
makes use of the updatedψ parameter on the next time
step.

2.4.4 Algorithm

Algorithm 1 shows a single time step of the resulting
simulation, capturing the ordering of the steps just de-
scribed and their simulated parallel update. In the STEP

procedure, lines 4–5 show the effect of obtaining the
current view selector and using it for cell selection.
Lines 9–10 of STEP provide the mechanism for discov-
ering information (by consulting the discovery field, I ,
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when moving to a new location) and for communicat-
ing to others (at the same time as force is delivered).

3 Results

Three scenarios are presented in order to demonstrate
the effects of introducing information discovery, pro-
cessing and communication into the model. First, we
present a baseline scenario to show how the force-
enabled floor field model performs without any diver-
gent movement goals. Second, we introduce informa-
tion discovery and processing. Finally, we enable com-
munication.

Like the scenarios studied in previous floor field
model egress studies [6,10,16], scenarios take place in
a room of dimension 61× 61 cells, surrounded by wall
cells. Because we are less interested in bottlenecks and
more interested in a crowd that moves enough to allow
interactions between groups of agents, we here provide
for many more exits than in previous studies. Accord-
ingly, one wall of the room contains 10 exits, each of
width 3 cells, spaced evenly along the wall (see fig-
ure 3). For kS and kD, we have followed previous work
[10] in selecting three levels of agent drive defined as:
low (kD, kS) = (10, 0.4), medium (kD, kS) = (4,1) and
high (kD, kS) = (0, 7). (As our interest here is not in
the effects of extreme force at bottlenecks but rather
in agent interactions, we here selected kS = 7 rather
than kS = 10 at high drive; the present value still pro-
duces relatively high drive, but largely eliminates the
aisle effect at bottlenecks — c.f. [6, 10].) There were
1116 agents at the outset of the simulation (30% oc-
cupancy). Agent pushing forces (ρ) were drawn from
a normal distribution (mean 5, standard deviation 1).
Remaining parameters are as follows: α= 0.3, δ = 0.3,
χ = 3ρ. All runs were repeated 50 times and mean re-
sults are reported.

We will report on three dependent measures: num-
ber of agents exiting in a fixed interval (350 time steps,
to allow comparison with results of [10]), number of
agents injured during the simulation and number of
steps taken by exiting agents (quantification of direct-
ness of agent exit). Not all agents are able to exit in
every case, either because the number of time steps
available is limited or because agents become injured.

As described in section 1, actions taken in crowd sit-
uations are best viewed in the light of the information
available to the individual at the time. Indeed, dis-
aster investigations often include questionnaire stud-
ies in which survivors are asked where and when they
noticed danger cues and became aware of key facts
(e.g. [28]); this information is of great interest in un-
derstanding behaviour. Accordingly, in the results re-

Figure 3: Physical environment for model scenarios. Ten ex-
its shown (black cells in walls) with static field (colour gradi-
ent). Agents not shown.

ported here, we have often grouped agents based on ψ
upon exit. This allows us to report how many agents
in each information state were successful in exiting as
well as how directly these agents moved toward the
doors.

Although looking at the differences across groups is
one way to determine the heterogeneity of the crowd,
observation is key to understanding the behaviour of a
heterogeneous crowd. In studying only exiting agents
we would naturally leave out agents who do not exit
the space; analysis of the non-exiting agents is made
more complex due to the fact that their failure to exit
is sometimes produced by interactions between the
groups. We will discuss the non-exiting agents by re-
course to observation.

3.1 Homogeneous crowd

As a baseline, this first scenario contains only one static
field that correctly identifies the locations of all the exit
cells (see figure 3). All values of the discovery field in-
dicate the use of this single static field, and all agents
consult this static field from the outset of the simula-
tion.

In previous work we have found that moderate drive
to exit produces the best exit rate [6,10]. Although one
might predict that providing additional exits would ac-
commodate more urgent egress, we found a continued
advantage for moderate exit drive (figure 4). (For each
value of φ, we compared the number of exits at high
and medium drive with standard Welch’s t-tests [29];
each comparison was statistically significant with two-
tailed p < 0.001.)

The results of this scenario, however, differ from pre-
vious scenarios studied [10] in that injuries — even
when numerous (at high drive with low injury thresh-
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PROCEDURE STEP(D, S, F, I , agents)

1 DECAY-AND-DIFFUSE(D)
2 for each a in agents
3 do a.CHECK-INJURY(F)
4 ψ← a.GET-VIEW-SELECTOR()
5 a.CELL-SELECT-WITH-FORCE(D, Sψ, F)
6 for each a in SHUFFLE(agents)
7 do if a.ATTEMPT-MOVE() = FALSE

8 then a.PUSH()
9 a.TELL(ψ)

10 else a.DISCOVER(I)
11 PROPAGATE-FORCE(F)

PROPAGATE-FORCE(F)

1 for each (i, j) in F
2 do if IS-EMPTY(i, j) or IS-INJURY-AT(i, j)
3 then � force is not propagated
4 else for n← 1 to floor(|~fi j |)
5 do (i′, j′)← CELL-IN-DIRECTION( f̂i j , i, j)
6 if not IS-EMPTY(i′, j′)
7 then DROP-FORCE-PARTICLE(F ′, i′, j′, i, j)
8 F ← F ′

AGENT METHOD TELL(ψ)

1 s← SELF

2 (i, j)← s.GET-DESIRED-CELL()
3 r ← AGENT-AT(i, j)
4 r.HEAR(ψ)

AGENT METHOD DISCOVER(I)

1 s← SELF

2 (i, j)← s.CURRENT-LOCATION()
3 s.HEAR(Ii j)

AGENT METHOD HEAR(ψ′)

1 s← SELF

2 ψ← a.GET-VIEW-SELECTOR()
3 if ψ′ >ψ
4 then s.SET-VIEW-SELECTOR(ψ′) � New view selector not used until next step

Algorithm 1: Force-enabled floor field model step function modified for information processing and communication. The
following procedures have been described elsewhere [6] and their definition is not relevant for our purposes here: DECAY-
AND-DIFFUSE that implements the dynamic field propagation discussed in section 2.3.2, CHECK-INJURY that marks the agent as
injured if fi j > φ, CELL-SELECT-WITH-FORCE that causes an agent to select (or be forced to select) a target cell for movement,
ATTEMPT-MOVE that moves the agent and returns true (or returns false if movement is blocked). The functions PUSH (drop
force particles on a’s current cell, which will be propagated to a’s desired cell at STEP line 11), GET-VIEW-SELECTOR and SET-
VIEW-SELECTOR (access ψ of agent), GET-DESIRED-CELL (return the currently selected cell), AGENT-AT (return a reference to the
agent at a particular location), CURRENT-LOCATION (return the current position of the agent) and SHUFFLE (randomly re-order
a list) are considered primitive and their implementation is not shown.
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Figure 4: Homogeneous crowd: Agents exiting and injured.
Range of φ explored.

olds) — did not have a pronounced effect on the exit
rate. Here the large numbers of exit cells reduce the
tendency of injured agents to physically prevent egress
through blockage of the exits. For this reason, in the
remainder of this article we will not analyse the effects
of injury threshold on agent exits, instead we will fix
φ = 125 (the mid-point of the explored range), and
show exit results as in figure 5a.

Let us consider figure 5b, the number of steps taken
by agents at differing crowd densities. At high drive,
the mean number of steps to exit is 30.36, very close
to the 30.5 that would be expected for a complete op-
timal exit given a uniform distribution in a space of
size 61 × 61. The larger number of steps in the re-
maining two cases indicates a more circuitous route
followed due to the influence of the larger kD parame-
ter, and consequent smaller influence of the static field.
At medium drive, almost all the agents were able to
exit, but many more steps were taken. At low drive,
agents are not motivated to move toward exits, and so
many fewer agents exit — primarily those initially lo-
cated close to the doors; even if initially close to the
exits, exiting agents take large numbers of steps to do
so.
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Figure 5: Homogenous crowd: Agent egress measures. (φ =
125)

We have established baseline results for our scenario
with ample exit cells, and only a true static field. Agents
are relatively unimpeded in exiting. Let us now turn to
the question of information discovery and information
processing. How would crowd dynamics be altered if
agents believed in a second set of exits?

3.2 Heterogeneous crowd

This scenario takes place in the same physical space as
the previous scenario. This scenario, however, contains
two static fields. The first static field (figure 6), used by
all agents at the outset of the simulation, reflects all of
the real exits, but also supposes an identical set of exits
on the opposite wall (which are in fact blocked). The
discovery field is configured so that agents approach-
ing the blocked exits (i.e. coming within two cells of
the wall with the blocked exits) switch to the second
static field, which only reflects the good exits (figure 3).
For the purpose of characterising the effects of varying
beliefs alone, we here disable the communication be-
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Figure 6: Static and discovery fields in the heterogeneous
scenario. All agents start with the static field shown (S0).
The crosshatched area indicates the two cells nearest the wall
in which the discovery field value is 1. Agents moving onto
these cells change to the second static field (S1), which is
identical to the one displayed in figure 3.

haviours in the model by disregarding line 9 of STEP in
algorithm 1.

Analysis and understanding of the results depends
on a description of the behaviour of the model agents.
Observations reveal that there are three categories of
agents at the outset of the simulation:

1. agents unaware of the blocked exits (naïve agents
with ψ= 0) located in the half of the room closest
to the doors,

2. agents aware of the blocked exits (knowledgeable
agents with ψ = 1) who are located within two
cells of the blocked exits, and

3. naïve agents located in the half of the room closest
to the blocked exits.

These categories, or groups, exhibit different be-
haviours and have different outcomes. The outcome
for an agent is not solely affected by its group member-
ship, as there is also an interaction with agent drive.

3.2.1 High drive and moderate drive cases

Observation of the simulation (see figure 7) reveals
the behaviour interactions between the three groups of
agents, which differ only in degree between the high
and moderate drive cases. Because of the influence of
the static field in these cases, the agents move rapidly
toward the closest exit. Group 1 agents are free to move
toward the true exits and exit readily, never becoming
aware of the blocked exits. Group 2 agents (who are
joined within the first few time-steps by a small num-
ber of group 3 agents close to the blocked exits) realise

Figure 7: Three groups of agents at discovery of blocked ex-
its. Naïve agents exiting northwards (group 1). Note barrier
formation as knowledgeable agents at the south wall (group
2, in white) cannot pass southbound naïve agents (group 3)
pushing toward blocked exits on the south wall. kD = 0,
kS = 7, φ = 125, time step 11.

that they are at the wrong end of the room and begin
to move toward the real exits. The remaining group 3
agents approach the blocked exits and encounter group
2 trying to move in the opposite direction.

In these cases, group 3 quickly forms a barrier for
group 2 and vice versa. Because the exits are spaced
evenly along the walls, the group 3 agents form into a
band stretching from wall to wall; because of the large
number of group 3 agents, the band is many agents
deep, and (barring injuries) can physically push group
2 back toward the blocked exits. In the high drive case,
the band forms rapidly, is high density and is impen-
etrable to group 2. In the moderate drive case, the
band is slower to form, is less dense, and some group
2 agents are able to infiltrate themselves through the
band. What is particularly interesting about this bar-
rier formation is that the jam occurs in open space, and
is not catalysed by physical structures such as bottle-
necks, narrowings or obstacles.

Let us take up the question of injuries. Injuries (fig-
ure 8) followed the pattern of previous studies in that
higher drive to achieve goals results in more injuries
[6, 10]. As discussed in section 3.1, injury rates are
generally lower than in these previous studies because
there are ample exits available along one wall, which
accommodate many agents per time step. The porous
wall reduces crowd density and hence movement con-
flicts at the exit.

Observation reveals that remaining injuries are pri-
marily concentrated where groups 2 and 3 meet. This is
consistent with Fruin’s observation that injuries within
a crowd are not distributed at random, but follow pat-
terns of force that accord with the context of the situa-
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tion [27]. Injuries occur as group 2 agents (unable to
make their way forward) exert force upon the tightly
packed crowd of group 3 agents, and vice versa. As
φ increases, injuries fall as the agents are not numer-
ous enough to bring a crushing force to bear. (Recall
that group 1 agents exit quickly in all cases, limiting
the number of individuals and consequently the force
applied.) Regardless of whether the situation is com-
plicated by injuries or not, the stable barrier formation
persists and a stalemate ensues in which neither group
2 nor group 3 exits the modelled area.

This stable configuration — with or without injuries
— explains the fact that exit rates are independent of
φ in this scenario, while injury rates are not. The
pattern of exits engendered by the model (figure 9a),
together with our observations, confirm that group 2
agents (with ψ = 1) are, for the most part, unable to
exit in this scenario. In the high drive case only 1.3
knowledgeable agents on average manage to exit; they
originate adjacent to the blocked exits and are able to
move toward the real exits before the group 3 agents
have fully blocked the route. In the moderate drive
case the group 3 agents approach more slowly, giving
on average 32.8 group 2 agents a chance to escape the
barrier formation and move to the exit. The numbers of
agents exiting withψ= 0 in both the high and medium
drive cases is the same because these are the group
1 agents (expected to number half of the 1116 initial
agents) who have time for a complete exit in both the
high and moderate drive cases.

In terms of distance travelled (figure 9b), exiting
knowledgeable agents with ψ= 1 required many more
steps to exit than did naïve agents with ψ = 0. Note
that agents exiting with ψ = 1 may have originated
either in group 2 (knowledgeable at the outset) or in
group 3 (naïve at the outset, but gaining knowledge
through discovery).

3.2.2 Low drive to exit

Model behaviour when drive to exit is low is quite dif-
ferent from the previous cases. In this case, the low
influence of kS relative to kD means that agents display
only a weak movement bias toward areas believed to be
exits. The classification of agents into three groups is
still meaningful in terms of explaining their behaviour,
but the dramatic conflict between groups 2 and 3 does
not occur. This is because the group 3 agents do not
move toward the blocked exits in large numbers. They
leave large spaces that allow group 2 agents the free-
dom to infiltrate through group 3 in moving toward the
real exits. Indeed, the space created by moving group
2 agents allows agents from group 3 to move into the
blocked exit area, discover the blockage, and join the
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group 2 agents in moving toward the open exits.
Referring to figure 9, however, it is clear that avoid-

ance of a stalemate between groups 2 and 3 does
not translate into exits by knowledgeable agents with
ψ = 1. This is because the agents, even though they
are knowledgeable about blocked exits are simply not
driven to move toward the real exits. The exit and step
pattern for low drive agents in figure 9 is essentially the
same as that shown in the baseline case of figure 5.

In summary, section 3.1 determined that a scenario
having the same number of real exits as this one re-
sulted in unimpeded egress and minimal injury. In the
present scenario, simply by introducing belief in a set of
blocked exits, the heterogeneity of the crowd resulted
in jamming in open space, a much lower exit rate and
a much higher injury rate. In this case the conflict oc-
curred due to agents working at cross-purposes. Agents
that had discovered information moved one way, while
agents who had yet to discover the information moved
in the other. The difference in behaviour and results
between these two physically identical scenarios under-
scores the importance of modelling human behaviour
in microscopic crowd models.

In this scenario, the communication potential of the
agents was suppressed, and so physical discovery of in-
formation was required to change behaviour. Let us
now determine the effects of inter-agent communica-
tion by activating the communication simulation within
the model.

3.3 Heterogeneous crowd with communi-
cation

In this scenario we take up exactly the same situation
as in section 3.2, except that we now enable the com-
munication functionality of the model (line 9 of STEP in
algorithm 1). In cases where they are blocked in move-
ment, agents will now communicate their view selector
to the blocking agent.

Observation reveals that in this scenario, the same
three groups arise at the outset of the simulation as did
in the last scenario. As the simulation unfolds, how-
ever, the barrier formation where naïve group 3 agents
and knowledgeable group 2 agents jam one another in
place does not occur. Here, a human factor (communi-
cation) has eliminated jamming forces by altering agent
goals. When a naïve agent moves to block a knowl-
edgeable one in this scenario, the knowledgeable agent
communicates its view of the world, updating the ψ
value of the naïve one; this has the effect of explaining
the blocked exit condition to the naïve agent, turning
it into a knowledgeable one. Both agents move off to-
ward the real exits, informing other conflicting agents
on the way.

Table 1: Comparison of mean agent knowledge (ψ) where
φ = 125.

drive

scenario low medium high

§3.2 (no communication) 0.253 0.407 0.113
§3.3 (communication) 0.817 0.649 0.553

3.3.1 Effectiveness of communication

With our numerical measure of agent knowledge (ψ),
we can quantify the increased knowledge in the sys-
tem that results from communication. Table 1 shows ψ
across all agents (whether injured, exited or remaining)
at each drive level at the conclusion of this scenario and
that of section 3.2.

In the previous, non-communicating, scenario, aver-
age knowledge was generally low. This was particularly
the case at high drive, when the barrier formation lim-
ited the number of agents who could discover the exits.
Knowledge was also low at low drive, when few agents
bothered to travel any distance, and so did not discover
the blocked exits.

In the communicating scenario, by contrast, aver-
age knowledge is high. In this scenario knowledgeable
agents are the rule; even exiting group 1 agents learn
of the blocked exits. This is because of a wave of knowl-
edgeable group 2 and 3 agents that quickly crosses the
room. When the wave arrives at the sub-crowd of group
1 agents who are waiting to exit, the knowledgeable
agents communicate with the rearmost agents in the
sub-crowd. These rearmost agents, in turn, will com-
municate with those in front of them. As word trav-
els quickly in a dense crowd, soon all agents exiting
are knowledgeable. Those group 1 agents who exit be-
fore the arrival of the knowledgeable ones are essen-
tially the only agents who never learn of the blocked
exits. (This explains the drop in knowledge at higher
drives, when more group 1 agents exit before the wave
of group 2 and 3 agents arrives.)

3.3.2 Effect on injuries and exit rates

The injury and exit rates in this scenario demonstrate
the potential benefits of successful communication. In-
jury rates for this scenario (figure 10) are much im-
proved from the non-communicating case (figure 8), to
the point of being comparable (if not identical) to the
results of the homogeneous scenario (figure 4) in which
all agents were knowledgeable.

Figure 11 shows exit results compared to the baseline
case of section 3.1, and figure 12 shows the exit results
and steps taken broken down by ψ. When agent drive

14



0 50 100 150 200
φ

0

50

100

150

200

250

300
A

ge
nt

s
in

ju
re

d
Low Drive

Medium Drive

High Drive

Figure 10: Heterogeneous crowd with communication:
Agents injured.

was high, total exits were actually improved slightly
from the baseline case (as were injuries); this occurred
due to the increased number of steps for group 3 in
this scenario. The larger number of steps for agents
in group 3 had the effect of delaying their arrival at
the exits, consequently reducing density and pressure
(and hence injuries and delays due to jamming) in that
area.3

While more high drive agents exited compared to the
homogeneous scenario, fewer moderate drive agents
did. This was due to the larger distance covered by
group 3 agents who initially moved away from the
real exits; at moderate drive, the slower pace of these
agents limited the number who could travel this ad-
ditional distance and still exit within the limited time
available. (This underscores the importance of timely
and accurate information in evacuations.) At low drive,
the same number of agents exited as in the baseline
case (drive being the limiting factor on egress in this
case rather than knowledge).

In interpreting the figure 12 breakdown by ψ value,
we must bear in mind the discussion of section 3.3.1:
communication causes transitions in ψ at exit time if
there is a jam at exits. Many agents exiting from the
jam are knowledgeable, even though this knowledge
was incidental to their egress strategy. Similar chal-
lenges relating to determining who knew what and
when also occur in investigations of real crowd inci-
dents, and explain the focus of investigators on when
people become aware of various aspects of a situation.
This level of data collection is beyond the scope of what

3Although the purpose of the present article is not a microscopic
investigation of high-density-jamming (c.f. [6, 10, 23, 30–32]), it is
interesting that delayed arrival reduced the density sufficiently that
high drive to exit resulted in the best exit performance. These results
support the view that if density can be managed, a physical geometry
can support faster speeds.
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tion 3.3.) φ = 125
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is reported here, leading to watering-down of differ-
ences between groups in figure 12.

This point is important in understanding the appear-
ance of even exit rates between ψ values in figure 12a.
Unlike in section 3.2, some exiting group 1 agents exit
with ψ = 1. Thus ψ is a poor predictor of group mem-
bership in this scenario. Despite this, figure 12b shows
that heterogeneity is preserved in the crowd. Even with
some watering-down of differences between groups,
agents with ψ = 1 still take approximately three times
as many steps to exit on average. Thus, although com-
munication helps conflicting agents to act in a more co-
ordinated manner, figure 12b demonstrates continued
heterogeneity (and thus non-interchangeability) when
an agent’s personal history is considered; the time-line
of knowledge acquisition for each agent influences their
pattern of movement over the life of the simulation —
and, ultimately, their time to exit.

4 Discussion

4.1 Freezing by heating at Central Lenin
Stadium

The present results can be related to a crowd disas-
ter that occurred on October 20, 1982, when an in-
ternational soccer match was played between Spartak
Moscow and the Dutch HFC Haarlem at Central Lenin
Stadium in Moscow. Although there are discrepancies
in details between official and unofficial accounts, the
disaster has come to be “acknowledged as the world’s
worst soccer tragedy” [33]. Fans began to exit the sta-
dium down a dark icy hallway before the end of the
game. When a late goal was scored, the sound of the
cheering from within caused these fans to attempt re-
entry. The re-entering fans met large numbers of ex-
iting ones (a single section of the stadium contained
10 000 fans) in what has been described as a human
mincer. Although numbers of dead were initially re-
ported as “little more than a dozen”, and eventually at
61 by Soviet authorities, an independent report seven
years later put the number at 340, and this number is
commonly used in references to the event for memorial
purposes. [33–36]

The Lenin stadium disaster and the barrier forma-
tion described in section 3.2.1 are examples of counter-
flow clogging that has been modelled in discrete sys-
tems [37] and later in continuous ones also [38].
Schmittmann et al. described a phase transition in
which oppositely charged particles, driven to approach
each other from opposite directions by an external field,
become segregated into a stable structure due to mu-
tual blocking. They found that high mass density (par-

ticle density regardless of charge) and drive favoured
this transition [37], sometimes termed freezing by heat-
ing.

Although the work of Schmittmann and colleagues
concerns stochastic lattice gases, it is relevant to under-
standing the barrier formations we observed and the
clogging at Lenin stadium. In crowds, freezing by heat-
ing predicts that when drive is low, crowd tolerances
(in a physical sense) may be higher than when drive is
high. Consider two facing groups of pedestrians cross-
ing the street. These two groups need to pass through
one another in the crosswalk. Slow speeds promote
smooth and efficient flow as people have time to find
a space through the opposing crowd. If the groups at-
tempt to cross at a run, however, there will be insuffi-
cient time to make this accommodation and there will
be collisions and jamming in the crosswalk. High den-
sity compounds this effect — a few pedestrians may be
able to avoid each other while crossing quickly, while
large groups may need to move quite slowly to allow
for free passage.

With sufficiently large crowds and high drive, the
Lenin stadium example demonstrates how freezing by
heating can lead to a crowd disaster; two crowds at-
tempted to pass through one another with high drive
brought on by the excitement of an international sports
match. (It should be noted that the heterogeneity of the
crowd goals was an important factor in this disaster.
Thus, a model wishing to study this disaster requires
the capability to represent a heterogeneous crowd.)

We note a strong correspondence by which the het-
erogeneous crowd, barrier formation, stasis and in-
juries in section 3.2 echo the disaster at Lenin Stadium;
both are consistent with the freezing by heating effect
in counter-flow. This correspondence reinforces the va-
lidity of our quantitative model results. Our results sup-
port the view that slower collective progress can result
from higher individual drive in crowds with conflicting
movement goals. When we introduced differing agent
goals through discovery of information in section 3.2
we demonstrated the freezing by heating effect in the
barrier formation created — in open space, indepen-
dently of the physical geometry — by the interaction
between groups 2 and 3:

• At low agent drive, crowd densities and speeds
remain low, allowing for an accommodation as
groups 2 and 3 infiltrate themselves through the
gaps in the opposing group.

• When drive becomes moderate, the density in-
creases and there are many fewer empty spaces in
the band formed by group 3. This leads to inter-
ference between the groups and limited potential
for group 2 agents to access the real exits.
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• In the high drive case, the group 3 agents essen-
tially form an impenetrable wall, and the group 2
agents are pinned behind it.

Thus, as particle drive within the system increases from
low to high, the resultant pattern of interaction be-
tween the groups becomes more rigid, culminating in
a frozen stand-off when drive is highest.

By introducing heterogeneity into a crowd move-
ment model, we have been able to demonstrate a freez-
ing by heating which is not seen if all agents behave
identically in their move toward the exits. Although
jams in counter-flow have been previously studied (in
the floor field model [15], in other cellular automata
and lattice gas models (e.g. [39–41]) and in continu-
ous simulations [42]) scenarios have typically involved
simple, orchestrated jams obtained by directing fixed
groups of agents at one another with no involvement
of force or ‘heating.’ In the case of the floor-field model
studies [15] this approach was required as the model
was not yet able to study force related effects (intro-
duced in [10]) or the emergence of groups (introduced
here through dynamic discovery of spatial information
and communication). Thus the present improvements
have enhanced our ability to study complex situations
such as emergent jamming in counter-flows.

4.2 Information during emergency egress

It has been noted in the context of fire disasters that
providing timely, specific, authoritative and accurate in-
formation improves safety by increasing available time
to evacuate [8]. Our results suggest a second way that
information can improve safety: a reduction in counter-
flow through common movement objectives. We have
seen in section 3.3 that good information (as well as
communication between crowd members) eliminated
the barrier formation when agents recruited others to
a mutually beneficial movement strategy. This resulted
in an increased exit rate and decreased injuries.

Interestingly, these two observations can interact
when information is low. When information is with-
held, available safe escape time for occupants is re-
duced due to delay in pre-movement time [8]. The
consequent smaller window for escape can increase
drive to exit, which is associated with higher densi-
ties, lower exit rates and more injuries [6]. Indepen-
dently, as our results suggest, absence of good informa-
tion and communication can also lead to paradoxical
effects like jamming in open space that further reduce
crowd safety. The interaction occurs between these
two problems: As available time decreases and drive
increases, density rises and jamming is more likely to
occur (through freezing by heating) and its effects are

more severe. Jamming reduces exit efficiency, which
further wastes the available safe escape time and in-
creases the drive to exit in the remaining time, which
contributes to further heating in the system.

Of course, an additional pre-requisite for smooth
pedestrian flow is a physical geometry that supports
movement without counter or crossing flows (c.f.
[43]). Our results show the importance, however, of
considering more than just physical factors. If accu-
rate information is shared with evacuating building
occupants in a timely manner then: available escape
time can lengthen and drive can consequently decrease,
movement patterns can become more felicitous and the
risk of counter-flow clogging can be consequently re-
duced. These characteristics would ultimately suggest
a safer evacuation.

4.3 Situatedness and knowledge repre-
sentation

Let us now consider heterogeneity itself in the crowd
context. In a sense, the original floor field model can
be seen as supporting a heterogeneous crowd because
the static field can break a crowd into sub-crowds that
move toward differing targets at the outset of the sim-
ulation. This occurs because the floor field model nat-
urally provides for a situated simulation. In keeping
with the concept of situated cognition in cognitive sci-
ence [44], agents directly consult their immediate sur-
roundings (the local neighbourhood in the static field)
regularly, making local movement decisions based on
current conditions (including the movement of other
local agents); this can be contrasted with a traditional
artificial intelligence approach to planning that pre-
computes complete and optimal paths in an abstract
planning environment, with the actual path traversal
delegated to a separate system in a distinct process
[45].

The heterogeneity present in our model goes beyond
the sub-crowd-based heterogeneity of the floor field
model. This is because the sub-crowds in the floor field
model are themselves homogeneous. We have intro-
duced a mechanism for agents to be part of the same
crowd, in the same physical area, and yet not be fo-
cused on the same objectives.

The differences in exit performance by agents with
different information states (represented within the
model by different values of ψ) does quantify a pattern
of heterogeneous behaviour within the crowd. We note,
however, that differences within information states can
be as important as differences between such states. For
example, agents with ψ = 0 are divided into groups 1
and 3 because of situated information processing de-
spite their identical mental content. This difference in
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behaviour between agents that have the same mental
content demonstrates the tightness with which the hu-
man factors of information processing and communica-
tion have been integrated with the force-enabled floor
field model; by integrating knowledge representation
at the level of movement rules within the individual,
our method produces agents that remain highly situ-
ated. This argues for the practicality of implementing
human factors at the microscopic level, here accom-
plished using the microscopic human factors approach.

5 Conclusion

By extending the floor field model, we have created a
microscopic model of information discovery, informa-
tion processing, communication and representation of
knowledge. Basing our specification on Sime’s obser-
vation that crowd situations are information systems
through which people move, we have allowed agents
within the model to obtain spatial information from the
environment during circulation and to act on this infor-
mation, creating a dynamically heterogeneous crowd.
Obtaining new information leads to new movement
goals, and, depending on agent drive, conflicts between
agents of varying severity. Through freezing by heating,
these conflicts can lead to a barrier formation echo-
ing the Central Lenin Stadium disaster, rooted not in
physical geometry but rather in opposing crowd forces.
We found that communication can have a powerful re-
ducing influence on these forces when it causes agents
in opposing groups to adopt mutually beneficial move-
ment patterns. We found that communication elimi-
nated the barrier formation in the simulation, resulting
in dramatic increases in exits and decreases in injuries.

Although it may seem evident, it is worth noting
that the ability to represent heterogeneity in crowds
through discovery of information and changing mental
content allows for modelling of more complex and re-
alistic scenarios. Although we can fix mental content at
the outset of a simulation, this allows for studying only
simple scenarios in which agents are interchangeable
and not particularly realistic. As we have seen in our
blocked exit simulation, and as seen at Lenin stadium,
many situations unfold in several phases; without be-
ing able to represent changing goals we are unable to
represent these phases within the model. If a model
cannot represent these non-trivial — but interesting —
scenarios, it misses out on discovering the interesting
interactions between groups in the simulation.

At the beginning of this article, we discussed the
limitations of taking people to be homogeneous, in-
terchangeable ball bearings. Our individuals are no
longer interchangeable; their personal history within

the simulation is now relevant to understanding their
behaviour and performance. Thus, with the aid of the
microscopic human factors methodology, we have im-
proved the relevance of our modelled individuals to
real people.

There is ample room for further work in this regard,
as egress researchers have begun to consider the role
of occupant experience with physical structures in un-
derstanding behaviour. The ‘fire and ICE’ concept [46],
for example, argues that a consideration of learning by
occupants — by exposure to information during ingress
and circulation — is crucial to understanding what they
do in emergency egress. This observation suggests that
egress models must become more general, simulating
occupants in everyday use of a space as well as in
egress, and allocating to evacuating agents the knowl-
edge acquired during the exploration/occupancy phase
[47]. An abstract investigation of this approach could
use the model described here as a starting point, an in-
teresting possibility for future work. Future work could
also include making the abstract model more concrete
(e.g. in the case of fire egress, to consider interactions
with physical parameters such as available safe escape
time [48]), to expand it to other human behaviours
(e.g. to consider pre-movement [49]), to examine in-
teractions with heterogeneous movement rates [20,21]
and to examine situations with different exit configura-
tions.

Looking at our results more broadly, we showed
striking differences in behaviour between (i) a typi-
cal ball-bearing-like homogeneous crowd, (ii) a het-
erogeneous crowd in which different beliefs underlie
opposing movement goals, and (iii) a heterogeneous
crowd that communicates to reduce conflict and in-
crease safety. Despite the fact that all three scenarios
were physically identical, outcomes were very differ-
ent. From this observation, and to the extent that the
movement and force patterns simulated are indicative
of human responses to salient information, we draw
two conclusions:

• First, as opposed to simple panic, the results un-
derscore the importance of studying information,
how it is processed and where and when it is
obtained in understanding crowd dynamics and
crowd disasters.

• Second, the striking differences between the sce-
narios, however rudimentary, illustrates both the
potential and urgent necessity of incorporating hu-
man factors into microscopic crowd models.
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